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Abstract
Extracorporeal shock wave therapy (ESWT) has been extensively studied for its multiple biological properties, and although it is
widely applied in esthetical procedures, little is known about its effects on the epidermis and dermis. In this study, a histological
and immunohistochemical study of the effects of ESWTwas performed on rat skin. Forty-five female rats were treated with one
or two sessions of ESWTand sacrificed on days 1, 7, 14, and 21 after treatment. The samples were histologically processed and
then morphometric analyses were performed to assess the epidermis, dermis, and subcutaneous fat tissue thickness.
Immunohistochemical reactions were also performed against the antibodies: basic fibroblastic growth factor (FGF2), its receptor
(FGFR1), and α-smooth muscle actin. Slides were scanned and digitally assessed, to determine the microvessel density (MVD)
and digital scoring of the immunohistochemical staining. The results showed that ESWT produced a significantly higher collagen
content, MVD, and epidermis and dermis thickness than the control, non-treated group. Both in epidermis and dermis, FGF2 was
overexpressed in the ESWT-treated groups, whereas FGFR1 was increased only in the group treated with two ESWTsessions at
21-days post-treatment. The ESWT-treated groups have also shown diminished thickness of subcutaneous fat tissue. In conclu-
sion, ESWT induces neocollagenesis and neoangiogenesis, and upregulates the FGF2 expression, particularly in the groups
treated with two sessions. Furthermore, it was demonstrated that overexpression of FGF2 on skins treated with ESWT seems to
be a key role on its mechanism of action.
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Introduction

Esthetic procedures are utilized common resource in the cos-
metic dermatology/dermatologic surgery practice [1].
Currently, non-invasive rejuvenation therapies are widely
used to provide neocollagenesis and adequate dermal blood
supply. As a consequence, such therapies are able to promote
proliferation and renovation of dermal cells, blood vessels,
and extracellular matrix modulation [2]. Therefore, several
growth factors have been studied as responsible for biological
stimulation of neocollagenesis and neoangiogenesis [3, 4]. It
has been previously demonstrated that the radiofrequency
therapy modulates these biological events on rat skin through
stimulation and activation of the basic fibroblast growth factor
(FGF2) and its receptors (FGFR1) [5].

The FGF2 is a multifunctional growth factor mainly recog-
nized by its angiogenic and mitogenic properties [6–8].
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Although FGF2 has been extensively studied in morphogen-
esis, inflammation, tumorigenesis, and tissue repair, few stud-
ies have been focused in its biological activities during esthet-
ic procedures. It is well recognized that FGF2 is a potent
dermal stimulator, and experimental models have demonstrat-
ed its effect in deposition and maturation of collagen fibers [9,
10]. The activation of the FGF pathway depends of the bind-
ing with their four receptors (FGFR1–4) [11]. Therefore, it
was demonstrated that FGFR1 is the receptor with the highest
affinity for FGF2 [12]. Thus, we hypothesize that the
coexpression of FGF2 and FGFR1 may be associated with
high activities in the different tissues.

Extracorporeal shock wave therapy (ESWT) has been ex-
tensively studied for its multiple biological properties, mainly
by modulating the repair process [13]. The basis of this ther-
apy consists in the use of equipment able to generate a se-
quence of high-amplitude sound waves that reverberate
three-dimensionally. Previous studies have reported that
ESWT promotes angiogenesis and suppresses the inflamma-
tory response [14–16]; however, the molecular mechanisms
that cause these biological events are poorly understood.

Based on a recent proposal of evidence-based esthetic der-
matology practice [17], the present study aimed to investigate
the effects of ESWT on modulating the expression of FGF2
and FGFR1 in the skin. In addition, the neoangiogenesis and
collagen deposition were evaluated.

Material and methods

Ethical considerations

The experimental protocol applied in this study followed the
Animal Experimentation Code of Ethics and the Brazilian
College of Animal Experimentation guidelines. Approval
was granted by the ethics institutional review board at
Potiguar University, Natal, RN, Brazil (CEP/UNP; registra-
tion number 002/2017).

Subjects and treatment protocol

Forty-five female rats were randomly selected for this study
and divided into six groups according to the stablished treat-
ment and experimental period, as described in Table 1. During
the experimental period, the subjects received water and food
ad libitum, and were kept in an environment with controlled
light (cycles of 12 h light/dark), ventilation, and temperature
(24 °C).

Extracorporeal shock wave therapy

ESWT was applied without anesthesia using a Storz Duolith
SD1 device (STORZ MEDICAL AG, Switzerland) in one or

two therapeutic sessions with 48-h interval in-between. The
settings were 500 impulses (pressure 2 bar, frequency 4 Hz)
with an average energy flux density of 0.13 mJ/mm2.

Morphological analyses

Sequential 5-μm sections were stained with HE, picrosirius
red, and Masson’s trichrome. Two trained pathologists per-
formed the quantitative morphological analyses, consider-
ing ten fields of high amplification for each subject. The
subcutaneous fat layer, epidermis, and dermis thickness
and the collagen content were measured with a Software
Leica Application Suite, version 2.8.1 (Leica Microsystems
GmbH, Wetzlar, Germany). Inflammatory cells were manual-
ly counted.

Total, type I, and type III collagen content were assessed as
follows:

Total collagen content was assessed in the Masson
trichrome-stained slides, considering the areas of blue
stain divided by the total-analyzed area, using the formula
(total collagen content = blue-stained areas ÷ total area
analyzed × 100). Collagen content was expressed in
percentage.
Type III collagen content was assessed in picrosirius
red-stained slides and analyzed under polarization,
considering the areas of green stain, and the percent-
age of collagen content was obtained using the formu-
la (type III collagen content = green-stained areas ÷
total-analyzed area × 100). Type I collagen content
was assessed using the formula (type I collagen con-
tent = green-stained areas ÷ total-analyzed area × 100).
The data was expressed in percentage.

Immunohistochemical assay

Paraffin-embedded 3-μm sections were submitted to antigen
retrieval with sodium citrate buffer solution (10 mM, pH 6.0)

Table 1 Experimental groups, ESWT protocol, and experimental
periods (time of euthanasia)

Group Treatment (ESWT) Experimental period (euthanasia)

Control (n = 15) No treatment 1, 7, 14, and 21 days

G1 (n = 6) One session 1 day

G2 (n = 6) One session 7 days*

G3 (n = 6) Two sessions* 7 days*

G4 (n = 6) Two sessions* 14 days*

G5 (n = 6) Two sessions* 21 days*

*With interval of 48 h between the sessions, time after the first session of
ESWT

Lasers Med Sci



and incubated with primary antibodies against FGF2 (poly-
clonal, dilution 1:50, Santa Cruz Biotechnology, Santa Cruz,
CA, USA), FGFR1 (polyclonal, dilution 1:50, Santa Cruz
Biotechnology, Santa Cruz, CA, USA), and smooth muscle
actin (clone 1A4, dilution 1:400, Dako, Carpinteria, CA,
USA) according to the manufacturer’s protocol. The second-
ary antibody (EnVision FLEX Systems; Dako, Carpinteria,
CA, USA) was conducted for 30 min, and staining was per-
formed using diaminobenzidine (DAB). Finally, the slides
were counterstained with Carazzi’s hematoxylin and
mounted.

Immunohistochemical analysis

The slides were scanned into high-resolution images with the
Aperio Scanscope CS Slide Scanner (Aperio Technologies
Inc., Vista, CA, USA) and were digitally assessed for estab-
lishment of the immunoexpression scores for all antibodies
using the Pixel Count V9 algorithm software (Aperio
Technologies Inc). Scores ranged from 100 to 300 as previ-
ously described [18]. The microvessel density (MVD) was
obtained with the Microvessel Analysis V1 software (Aperio
Technologies Inc) with the following input parameters: mode,
include incomplete vessels; vessel type mode, irregular/long
vessels; filtering/smoothing level, 2; dark staining threshold,
200; light staining threshold, 210; region joining parameter, 7;
vessel completion parameter, 7; minimum vessel area thresh-
old, 0; maximum vessel area threshold, 200,000; maximum
vessel wall thickness, 10; and clear area intensity, 240. The
MVD was expressed in (vessels/mm2) and scored as follows:
(1) no vessels detected, (2) up to 5, (3) up to 10, and (4) more
than 10.

Statistical analysis

Initially, the data were submitted to normality testing
(Kolmogorov-Smirnov and Shapiro-Wilk tests). The
Kruskal-Wallis test was used to compare the mean scores used
in the histomophometric analyses and MVD. Two-way
ANOVA was then performed to compare the mean of the
immunohistochemical staining. In these analyses, the control
group was not included due to the insignificant expression of
the markers analyzed, which were negative or very weak for
control animals. P < 0.05 was considered as significant.

Results

ESWT induces epidermal hyperplasia and cellular
proliferation

Figure 1 shows the morphological changes in the epidermis and
dermis of the skins treated with ESWT. Overall, morphological

analyses revealed that skins, either treated or not, showed epi-
dermis and dermis of normal aspects (Fig. 1a). The epidermis
seemed regular with 3–5 layers of keratinocytes; however, some
changes were observed in the treated groups, with epidermal
hyperplasia and increased number of layers, acanthosis and
less common, elongated, and thick downward epidermis pro-
jection. The epidermis thickness was higher in the G2, G3,
G4, and G5 groups than in the control (Fig. 1b), with a peak in
group G3 (P < 0.0001).

The dermis thickness was significantly higher in all
groups treated with ESWT in comparison to control group
(Fig. 1c, P < 0.0001). With exception of the G1 group, in
which one session of ESWTwas delivered, and no differences
were noted with the control group. In addition to the higher
dermal thickness, it was also possible to detect an increased
number of inflammatory cells, dermal fibroblasts, and other
stromal cells (Fig. 1d). Concerning the inflammatory events,
was performed a quantitative analysis of the mononuclear
cells was performed, and the ESWT-treated groups demon-
strated a significantly higher number of inflammatory cells
than the control group (P < 0.0001). This was more evident
24 h and 7 days after treatment.

Higher collagen densities were identified on skins
treated with ESWT than the values found in control
group

The collagen content was significantly higher in ESWT-
treated skins than in the control group. The results are sum-
marized in Table 2. Higher content of type I collagen was
more observed in G3, G4, and G5 groups than in the control,
non-treated group, and in G1with only one ESWT-therapeutic
session (P < 0.0001). A reduction on the subcutaneous fat lay-
er was also observed (Fig. 1a, red arrows, and Table 2. The
subcutaneous fat layer thickness was significantly reduced in
G3, G4, and G5 (P < 0.0001).

ESWT is associated with FGF-FGFR1 pathway
activation and induces neoangiogenesis

Figures 2 and 3 display representative images of FGF2
and FGFR1 expressions of ESWT-treated skins. Both
FGF2 and FGFR1 were weakly expressed or absent in
the skins from the control group. FGF2 demonstrated a
cytoplasmic expression in all layers of the epidermis in
the G3 skins than in G1, G2, and G5. In these last groups,
a pattern of individual cells expressing FGF2 was ob-
served. Dermal cells such as fibroblasts, endothelial, and
hair follicle cells demonstrated higher expression of FGF2
in G3, G4, and G5 (Fig. 2). The total collagen content
was significantly increased in G3 in comparison to the
other groups (P = 0.0221). Both in epidermis and dermis,
FGFR1 was equally expressed within the groups (Fig. 3).
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Only G5 showed a significantly higher FGFR1 expression
in the epidermis than in the other groups (P = 0.0239).
MVD was significantly higher in G3 and G4 than in G1
and G2 groups (P = 0.0003).

Discussion

Esthetic procedures are widely utilized with the purpose of
increasing skin metabolism and inflammatory response

Fig. 1 Histological and
histomophometric analyses. a
ESWT-treated groups with higher
epithelial thickness and higher
number of fibroblasts, and
inflammatory cells in the dermis.
Higher number of type I collagen
fibers (orange) was also observed
in the ESWT-treated groups. b
Epithelial thickness; *statistically
significant difference from the
control, #statistically significant
difference from G1, ǂstatistically
significant difference from G3,
ANOVA, P < 0.0001. c Dermis
thickness; *statistically significant
difference from the control,
#statistically significant difference
from G1, ANOVA, P < 0.0001.
d Mean of inflammatory cells;
*statistically significant difference
from control group, #statistically
significant difference from G1,
ǂstatistically significant difference
from G2, ANOVA, P < 0.0001

Table 2 Type I and type III
collagen content and thickness of
the subcutaneous fat layer in skin
tissues treated with ESWT

Control G1 G2 G3 G4 G5

Type I collagen 78.24%a 79.78%a 88.32%b 89.56%b 88.92%b 88.02%b

Type III collagen 21.76%a 20.22%a 11.68%b 10.44%b 11.08%b 11.98%b

Thickness of the
subcutaneous fat
layer

266.7 μma 227.5 μma 126.3 μmb 118.1 μmb 150.4 μmb 132.4 μmb

Means with different letters indicate a significant difference between the groups. For all three analyses, the value
of P was <0.0001 (two-way ANOVA)
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[1, 2]. However, the biological mechanisms that induce such
processes are little known, and studies for the establishment of
safe metabolism stimulation techniques are highly recom-
mended [3, 4]. The extracorporeal shock wave therapy
(ESWT) is recognized for its ability to improve the metabolic
activity of various cell types, including dermal and epidermal
cells [13–16]. It has been previously demonstrated that ESWT
improves the growth factor levels of tendon-bone junction,
consequently improving the neovascularization [14].
However, the molecular mechanisms involved in these pro-
cesses are still being investigated. Aiming to understand the

chronological effects of the ESWT, sequential analyses of the
treated tissues were performed.

The subjects were divided into five groups, with one or two
sessions of ESWT with skin removal for histopathological
analyses at 1, 7, 14, and 21 days after the treatment. Thus, it
was possible to analyze the chronological effects of the
ESWT. Overall, we observed that all subjects survived the
ESWTand no side effects were seen. The ESWTcaused some
minor changes in the epidermis and dermis of rat skins. When
treated with one ESWTapplication, the events were very sub-
tle, and the two-ESWTapplication has demonstrated the most

Fig. 2 FGF2 immunoexpression in ESWT-treated groups. a G1. b G2. c
G3. d G4. e G5. f Graphical representation of FGF2 epidermal
expression; *statistically significant difference from G1, #statistically
significant difference from G2, ǂstatistically significant difference from
G3, ANOVA, P < 0.0001. g Graphical representation of FGF2 dermal

expression; *statistically significant difference from G1, #statistically
significant difference from G2, ANOVA, P < 0.0001. h Average of the
total collagen content, quantified by the Masson trichrome staining.
*Statistically significant difference from G1, #statistically significant
difference from G2, ANOVA, P = 0.0221
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relevant biological events, highlighting its dose-dependent ef-
fect. This concurs with previous clinical studies on cellulite
[19] and in vitro research [20].

The higher epidermal and dermal thickness observed in the
treated groups revealed that this stimulatory effect is dose-
dependent, and consequently, it warrants the use of ESWT
as a therapy with rejuvenation purpose. Indeed, our group
has previously demonstrated that RF treatment [5], a known
rejuvenation technique that also causes epidermal and dermal

thickness increase as a consequence of the therapy’s stimula-
tory effects.

Rosso et al. [21] revised the literature about the mechanical
effects of ESWT and consequently collagen-deposition stim-
ulation. The authors conclude that ESWT is a therapy that
causes cellular proliferation, including fibroblasts and a con-
sequent increase in type I collagen deposition. Also, Vetrano
et al. [22] has demonstrated that ESWT increases the cellular
proliferation and type I collagen deposition on cultured human

Fig. 3 FGFR1 immunoexpression and microvessel density (MVD)
assessed by counting the vessels positive for α-smooth muscle actin in
ESWT-treated groups. a G1. b G2. c G3. d G4. e G5. f Graphical
representation of FGFR1 epidermal expression; *statistically significant
difference from G1, ANOVA, P = 0.0239. g Graphical representation of

FGFR1 dermal expression; no statistically significant differences noted,
ANOVA, P = 0.5078. h Scores of MVD. *Statistically significant
difference from G1, #statistically significant difference from G2,
Kruskal-Wallis test, P = 0.0003
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tenocytes. Analyzing the picrosirius red stain under light mi-
croscopy with polarization, the visualization of highly bire-
fringent thick (orange-red) and thin (green-yellow) collagen
fibers was possible. Thus, in this study, the type I collagen
quantification in the ESWT-treated skins was performed. A
higher type I collagen content in the ESWT-treated skins
was observed, corroborating with previously mentioned re-
searches. As a consequence of the ESWT, we expect that in
the clinical practice, it can promote the improvement of the
cutaneous aspect, preventing the signs of aging, and skin flac-
cidity. These effects are expected due to the microscopical
differences observed in treated and non-treated animals.

Although the levels of type I collagen have been modified
by ESWT-treatment, the total collagen content assessed by
Masson’s trichrome stain did not change. Only G3 showed a
significantly increased content of total collagen in comparison
to other groups. In fact, some studies have demonstrated that
the ESWT is able to induce fibroblast proliferation and change
the gene expression of type I and III collagens [23, 24]. This
may be explained by higher indexes of collagen remodeling
than neocollagenesis; however, additional studies are encour-
aged to clarify these specific questions.

Angiogenic growth factors are important for dermal supply
increase, acting as stimulators of neoangiogenesis [2]. Among
these, the FGF2 was recognized as a relevant skin growth
factor [6, 7]. Wang et al. [25] have demonstrated that ESWT
was able to induce overexpression of angiogenic markers in-
cluding vessel endothelial growth factor (VEGF) and endo-
thelial nitric oxide synthase (eNOS), and also higher endothe-
lial cell proliferation during repair of the tendon-bone junction
in rats. Other studies have shown that ESWT induces higher
expression of VEGF duringwound healing [26]. These find-
ings broadly corroborate with previous studies, as two ap-
plications of ESWTon rat skins increased theMVD, inflam-
matory infiltrate, and stimulated cellular proliferation. In
addition, this study demonstrated that ESWT induces
FGF2 overexpression, substantiating previous studies that
showed FGF2 upregulation in epigastric skin flap [26],
lymphoedema [27], and bone repair [28] rat models. These
results obtained in different animal models warrant future
clinical studies and allow more elaborated findings. Based
on these previous experimental studies [20, 25, 28], we se-
lected the settings of 500 impulses (pressure 2 bar, frequency
4 Hz) with an average energy flux density of 0.13 mJ/mm2.
In clinical practice, due to increased local blood flow, hyper-
emia may appear at the site of application as a consequence
of ESWT.

Concerning rejuvenation techniques, ESWT has been uti-
lized for the treatment of cellulite, localized adiposity, and skin
flaccidity [29, 30]. We provided, in this study, additional ev-
idence that it is a safe therapy and can be indicated for reju-
venation approach. With respect to laser-based rejuvenation
technique, the most common treatment is ablative resurfacing

with a carbon dioxide (CO2) or Er:YAG laser. It appears that
the mechanism of effect is very similar to the biological effects
observed with ESWT, such as thermal damage to the lower
layers of the dermis. Causing a collagen production but does
not injure the epidermis [31–33]. However, additional studies
are highly recommended to attempt to clarify these related
aspects.

Thus, this study suggests that the ESWT modulates FGF2
activity of and its FGFR1 ligand in the epidermis and dermis,
consequently stimulates neocollagenesis and neoangiogenesis.
It was also noted that ESWT may be an alternate expedient for
subcutaneous fat layer reduction. Hence, the present study pro-
vides original data about the biological effects of ESWTon the
skin of rats, and the confirmation of such data in clinical studies
is highly recommended.
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